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The three-dimensional nonlinear oscillations of an isolated, inviscid drop with surface 
tension are studied by a multiple timescale analysis and pre-averaging applied to the 
variational principle for the appropriate Lagrangian. Amplitude equations are 
derived which describe the generic cubic resonance caused by the spatial degeneracy 
of the eigenfrequencies of the linear normal modes. This resonant coupling leads to 
the instability of the finite amplitude axisymmetric oscillations to small non- 
axisymmetric perturbations, aa is demonstrated here for the three- and four-lobed 
normal modes. Solutions to the interaction equations that describe hi te  amplitude, 
non-axisymmetric travelling-wave solutions are also obtained and their stability is 
investigated. A non-generic cubic resonance between the two-lobed and four-lobed 
oscillatory modes leads to quasi-periodic motions. 

1. Introduction 
Rayleigh (1879) derived the frequencies for the small-amplitude oscillations of an 

isolated inviscid drop about the spherical equilibrium shape. The deformations in the 
drop shape were described in terms of the linear normal modes fJ,(O,q) eiwnt, where 
Sn(S,q) is a surface spherical harmonic of degree n and w,, the corresponding 
frequency, is given by 

U 
w: =-n(n-l)(n+2), (1.1) 

PR3 

where (r is the surface tension of the drop, p is the density and R is the drop radius. 
The oscillation modes n = 0 and n = 1 are excluded by the requirements of 
conservation of mass and linear momentum in a spherical coordinate system with 
the origin fixed at the centre of mass of the drop. Rayleigh’s results for this problem 
and on the cognate problems of an oscillating bubble and an oscillating drop 
immersed in an inviscid suspending medium are discussed in Lamb (1932). 

Subsequent linear analyses have included the viscosity of the drop (Reid 1960), 
the viscous effects of the suspending medium (Miller & Scriven 1968), as well as the 
dynamical evolution of the drop from general initial perturbations (Prosperetti 
1981). Experimental measurements of the oscillation frequencies by Marston & Apfel 
(1979), Trinh, Zwern & Wang (1982) and Trinh & Wang (1982) agree reasonably 
with the calculations of these linear theories but also show some new phenomena that 
can only be accounted for by the analysis of large-amplitude oscillations. For 
example, Trinh & Wang (1982) show that the oscillation frequency of drops 
suspended in a neutrally buoyant liquid decreases with increasing amplitude. 
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Tsamopoulos & Brown (1983, 1984) have calculated this decrease for the moderate 
amplitude, axisymmetric oscillations of an isolated, inviscid drop from a nonlinear 
analysis. 

The present work is motivated in part by some other experimental observations 
of Trinh & Wang (1982). In  their work, axisymmetric drop oscillations were excited 
and maintained by a suitably imposed acoustic pressure field. They observed that 
it was difficult to maintain a large-amplitude oscillation because of a tendency for 
a non-axisymmetric running wave to develop on the drop surface ; this phenomenon 
eventually lead to the drop rotating as a solid body. These transitions have been 
documented by Trinh & Wang in a striking set of photographs. Similar difficulties 
with establishing large-amplitude axisymmetric oscillations due to the onset of 
rotational motion were encountered by Jacobi et al. (1982) in experiments on a freely 
levitated drop in a low-gravity environment aboard a rocket flight. As shown in this 
report, such observations can be explained as being due to a third-order resonant 
instability of the axisymmetric motions to small non-axisymmetric perturbations 
that exist due to imperfections in the experiments. 

The motion of an inviscid drop is a complicated free-boundary problem with 
nonlinearities arising from inertia, capillarity and the coupling of the surface 
kinematics to the velocity field within the drop. A nonlinear analysis must account 
for these effects systematically as the amplitude of the oscillation is increased. The 
parameter B ,  is a measure of the amplitude of the oscillation relative to the equilibrium 
radius of the drop and characterizes the degree of nonlinearity. Expansions are 
written for the dependent variables, e.g. the velocity potential, pressure and drop 
shape as a perturbation series in powers of E .  Substituting these expansions into the 
governing equations and separating terms of equal order in E: lead to a sequence of 
linear, inhomogenous problems with the inhomogeneities at a given order being 
determined from the solutions of the lower-order problems. The leading-order 
equations are homogenous and for this set the solutions are constructed by the usual 
methods of normal mode analysis and superposition. Nonlinear effects are calculated 
from the higher-order problems by successive substitution. As is well known, the 
appearance of secular terms, i.e. terms that have the same spatial form and frequency 
as one of the linear modes, in the higher-order problems leads to difficulties in this 
approach. Such terms give rise to solutions with a polynomial growth in time that 
render the ordering assumptions of the perturbation theory invalid after short times. 
Secular perturbation methods (Nayfeh & Mook 1979) show that in a single- 
degree-of-freedom nonlinear oscillator the appearance of such terms is due to the 
dependence of the nonlinear frequency on the oscillation amplitude. These methods 
have been used by Tsamopoulos & Brown (1983, 1984) to calculate amplitude- 
dependent corrections to the linear frequency for the various axisymmetric modes 
of drop oscillations. In these problems the resonant terms appear at third order in 
the amplitude and are caused by the cubic self-interaction of the primary oscillation 
as well as by the interaction of the primary oscillation with the bound harmonics 
generated by second-order corrections. 

Resonance involving two or more linear normal modes is possible whenever the 
frequencies of these modes are commensurate, i.e. when a linear integer combination 
of the normal mode frequencies is zero (there also will be conditions that must be 
satisfied by the spatial forms of the normal modes but these are assumed to hold for 
the purposes of discussion). The presence of such resonances is of interest since it 
implies a coupling that permits the transfer of energy and angular momentum 
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between the normal modes in addition to usual amplitude-dependent frequency shifts 
discussed earlier. The dynamical effects of these internal resonances may be 
investigated by allowing for the amplitudes and phases of the primary modes to be 
functions of a slow timescale that is chosen to be consistent with the order of the 
nonlinearity at which the resonant terms appear. 

In  the present context, we note that there is a (2n+ I) spatial degeneracy associated 
with the eigenfrequency given in (1.1). For example, the normal mode with n = 3 has 
seven spatial components (1 zonal harmonic, 2 tesseral harmonics of rank one, 2 
tesseral harmonics of rank two and 2 sectorial harmonics) all of which have the same 
linear frequency. This degeneracy gives rise to an internal resonance that appears 
through the third-order terms in the nonlinearity and leads to a weakly nonlinear 
mutual interaction between these seven independent spatial components. The use of 
secular perturbation methods in this work to remove the resonant terms that would 
appear in a successive approximation procedure shows that the timescale for this 
mutual interaction is O(s2). The details of the internal resonance depend on the nature 
of the nonlinearity arising for each normal mode; nevertheless the phenomenon is 
generic and hence crucial to the understanding of the nature of the long-term 
dynamics of drop oscillations. 

From another point of view, the drop shape associated with the oscillation at the 
frequency w, is not determined by the linear analysis. This is because an arbitrary 
linear combination of the (2n+ 1) components of the surface harmonic #,(O, tp) may 
be superposed. However, not all these linear combinations are admissible finite- 
amplitude periodic solutions. It is only for certain special sets of initial conditions 
that the interaction equations will yield time-periodic solutions that resemble the 
linear theory but with corrections to the linear frequency that are amplitude 
dependent. Furthermore, to be physically realized these finite-amplitude time- 
periodic solutions must be stable to all possible perturbations. The internal resonance 
enables an energy exchange and hence identifies a class of possible unstable 
perturbations as well as the timescales on which these are realized. The existence of 
such instabilities can be tested by examining the signs of the eigenvalues of the 
appropriately linearized form of the interaction equations. 

More generally, the interaction equations can be numerically integrated from a 
given initial condition to examine the long-term dynamics. Natarajan & Brown 
(1986) studied the interaction equations for a quadratic resonance phenomenon that 
occurs in the oscillating-drop problem by numerical integrations. By simultaneously 
calculating the Liapunov exponents of the solution trajectories (Lichtenberg & 
Lieberman 1983) they showed that the normal modes participating in the resonance 
displayed a stochastic long-term dynamic behaviour. This phenomenon was primarily 
due to the large dimensionality of the set of interaction equations as a consequence 
of including the normal modes for describing non-axisymmetric oscillations. 
Reducing the dimension of the interaction equations to retain only the axisymmetric 
components yielded integrable non-stochmtic trajectories which, however, were 
unstable to non-axisymmetric perturbations. The relevance of those calculations to 
the analysis presented here is discussed further in $5. 

The primary goal of this paper is to study the cubic internal resonances that appear 
in inviscid drop dynamics due to the spatial degeneracy of the eigenfrequencies in 
(1.1). A complication arises here due to the fact that the n = 2 and n = 4 modes have 
frequencies that are related as 

up f 3w, = 0. (1.2) 
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Hence these two normal modes are resonantly coupled by cubic nonlinearities. This 
coupling is a peculiarity of the present problem and introduces analytical difficulties 
in the calculation that obscure the generic internal resonance occurring between the 
components of a single normal mode. For this reason we have chosen to first present 
the details of the calculation for the n = 3 primary oscillation in $3. The case of the 
resonant interaction between the n = 2 and n = 4 normal modes is treated in $4. 

2. Variational principle and asymptotic methods 
Nonlinear analysis of inviscid drop dynamics is complicated by the tedious algebra 

involved in the derivation of the amplitude equations that describe the resonant 
interactions. Fortunately, the relevant field equations and boundary conditions for 
the problem admit of an underlying Lagrangian from which they may be derived 
using Hamilton's principle. The use of a multiple timescales approach in conjunction 
with the pre-averaging of the Lagrangian in the resonant environment drastically 
reduces the algebra and leads to a concise formulation of the interaction equations. 
The use of this general approach was pioneered by Whitham (1967) in the study of 
gravity waves and by Simmons (1969) in the study of internal resonance effects in 
capillary-gravity waves. The previous study of quadratic resonance effects in inviscid 
drop dynamics (Natarajan & Brown 1986) has already demonstrated the usefulness 
of the variational approach. Its utility in the present context is even greater since 
the internal resonance appears at a higher order in the nonlinearity and the algebra 
is correspondingly more involved. 

In a spherical coordinate system with origin at  the centre of mass of the drop, we 
denote $(r ,  9, q ~ ,  t )  as the velocity potential, f(9, q ~ ,  t) as the shape of the drop surface 
and V as the volume of the drop. The Lagrangian for the motion is given by 

9 = a f 9 f e , f , ,  $r,  $8, #,> $ t , F o )  

I 1  = pJo 2 K l T f 1  [5{Q:+$($J+$;csc20) -$ t  r2 sinOdrd9dqI 

0 0  

The quantity po is the reference pressure difference, taken as the mean ambient 
pressure relative to the pressure in the equilibrium spherical drop and the functions 
$ and f are single-valued functions of the coordinates. With no further restrictions 
the field equations and boundary conditions appropriate to the problem follow from 
Hamilton's principle, which requires that 

6 9 d t  = 0 ,  Jt: 
where the limits of integration, to and t, are arbitrary. 

As noted earlier, the parameter E which is a measure of the amplitude of the drop 
oscillation relative to the drop radius serves as an ordering parameter in the analysis. 
There is no physical magnitude associated with E and its numerical value can be set 
to unity at any stage in the calculation. We take 
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(2.3b) 

where 7, the dimensionless radial coordinate, and 5, the dimensionless time coordinate, 
are normalized with the scales R and (Rapla)# respectively. The primed quantities 
in (2.3) are dimensionless and represent deviations from the spherical equilibrium 
state. The term p i ( [ )  in ( 2 . 3 ~ )  is required to account for the fact that the reference 
pressure is based on the mean drop radius which has a second-order time-dependent 
correction arising from the nonlinearity. 

Substituting (2.3) into (2.1) and expanding in a power series in ewe obtain for the 
dimensionless Lagrangian 9’ correct to terms of O(@) as 

9‘ = e{Jo 0 0  J ( -$kq2) ainSgdSdq} 
2 K  K 1 

+ O(e6). (2.4) 
The linear theory which leads to the frequency relation in (1.1) is recovered from 

the Lagrangian at  O(e2). This derivation was outlined in Natarajan & Brown (1986) 
where it is shown that the effect of a second-order internal resonance could be 
analysed by calculating the Lagrangian to O(s3). The present calculation differs in 
that at second-order only the bound harmonics of the fundamental frequency are 
produced and the resonances that appear at third-order require the calculation of the 
Lagrangian to O(t?). The evaluation of the bound harmonics can be carried out as part 
of the variational procedure and is illustrated in the specific cases that are considered 
below. 

3. Internal resonance of the n = 3 normal mode 

n = 3, we expand the drop shape and potential as 
In order to study the finite-amplitude behaviour of the linear normal mode with 
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where S, and R ,  are time-dependent surface spherical harmonics of degree n. The 
solution for 4' is chosen to satisfy Laplace's equation in the drop along with the 
boundary condition that the fluid velocity be finite at the drop centre. The O(e) terms 
in (3.1) are the harmonics that are generated through the second-order nonlinearities 
and their -form is anticipated from a successive-approximation procedure. A more 
general expansion in spherical harmonics could be assumed but it will turn out that 
the only non-zero terms are the ones that appear above. The term So(6) in ( 3 . l a )  is 
the O(e2) correction to the mean radius of the drop; the corresponding term Ro([) has 
been omitted in (3.1 b) since only its time derivative appears in the Lagrangian. It 
is clear from Bernoulli's equation that such a term is equivalent to a time-dependent 
pressure variation and hence can be absorbed into the O(e2) change in the reference 
pressure defined in ( 2 . 3 ~ ) .  

We substitute (3.1) into the Lagrangian (2.4) and make use of the orthogonality 
properties and various other identities involving integrals of products of spherical 
harmonics and their derivatives given in Appendix A. These manipulations yield 

+ e4 [ Inso + I," Ion S; sin 0 d8 jO2'Ion { 
x sin 8 dt9 d p  

3R + s,"" Ion { 25: + Ri - 2s: - 5 3 S ,  + 9R: 
36 . .  

x sin 8 d8 d p  

aR 

a6 
2K U 

+ jo I. { 9s: + - 2s: - 5%+?fR;) S, - 3 S ; 3 +  22R, S, R,} 

x sin 8 dB dp, 

aR aR6 

x sin 6 d8 dp, 
86 a6 

2% n 

+ lo lo { 205: + 3R: - 25: - 5 AS,)  S6-452 -+ 39R, S, R6} 

2% n +I 0 0  I { - ~ D ( S , , S , ) 2 + ~ R ; S ~ + ~ D ( R , , R , ) S ; - ~ ~ S ; }  3 86 sinededp], (3.2) 

where D is a convenient notation for the differential operator acting on pairs of 
functions such that, for example 

3S,aR, 8S,8R 
D(S,, R,) = - -+- 3 csc2 8. ae ae + + 

Taking variations of the Lagrangian with respect to p i  and So yields 

r2n rn  
4xS0 = - J, J S; sin e d8 dp, 

0 

2% n 
4x8, = - Jo jo (5 2 S, -+R: 

(3.3) 
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and these relations may be used to eliminate the corresponding variables from the 
Lagrangian. The time dependence of the remaining variables is now taken in the form 

S, = S3,1([2) eiwal+S& e-iwsE+O(s), ( 3 . 6 ~ )  

R, = -$w3S3, eiwat++iw,Szl e-""sE+O(e), (3.6b) 

S, = S,, ,, + Sn, e Z i w ~ ~ +  SX, e-2iost + O(s), ( 3 . 7 ~ )  

R, = -2iw, Rn,2 e2iw~~+2iw, RX,2 e-8iwaf+O(s), (3.7 b) 

where w, is the dimensionless frequency of the n = 3 mode as given by (1.1). The 
quantities {S,, 1, S,, o, S,, 2, R,, 8 }  are spherical harmonics which depend on the slow 
timescale t2 (defined below). The first subscript on these quantities denotes the degree 
of the spherical harmonic while the second term denotes the frequency in multiples 
of w, of the time-periodic term in the expansion that it multiplies. For brevity, the 
dependence on the angular variables 0 and Q, is suppressed in (3.6)-(3.7) as well as 
in the rest of this section. The primary quantity in the analysis is the complex-valued 
amplitude S,, and the remaining quantities are determined in terms of it,  as shown 
below. 

The effect of the cubic resonance is to cause the modulation of the amplitude and 
phase of the primary oscillation mode on a timescale that is O(s2) with respect to the 
primary timescale 6. This is accounted for in (3.6)-(3.7) by taking A',, to be a function 
of the slow timescale C2, defined as 

and for n = 2,4,6, 

6 2  = &$2@36, (3.8) 

where the normalization factor in this expression is picked for analytical convenience. 
Otherwise, the O(1) terms in (3.6) are chosen to be consistent with the linear theory 
and this may be easily confirmed by substituting into the O(s2) terms of 
the Lagrangian and integrating over a cycle of the oscillation. The vanishing of the 
integral is consistent with the fact that in a linear system the kinetic energy and the 
potential energy averaged over an oscillation cycle are equal. The terms in (3.7) are 
the harmonics generated by the second-order nonlinearities. They have, as expected, 
frequencies of 0 and f20, and are composed of all the surface harmonics of even 
degree up to 6. The mean Lagrangian Y', evaluated over a cycle of the primary 
oscillation is defined as 

and is expressed in terms of the expansions (3.5) and (3.6) by substituting them into 
(3.2). For the purpose of evaluating this integral, S3,1 will vary only slightly over 
the integration interval and can be taken to be approximately constant. Likewise, 
time derivatives of S,, will be O(e2) and this ordering must also be preserved in the 
calculation. A general term in Y will vary on the primary timescale with a frequency 
of either 0, f w,, & 2w3, f 3w, or & 40,. The oscillating terms average to zero and isolate 
the slowly varying terms in the Lagrangian. These slowly varying terms arise solely 
due to the effect of the internal resonance and hence the averaging procedure 
effectively emphasizes those terms that govern the modulation behaviour of the 
oscillatory system. 

Much of the tedious algebra is involved in the calculation of Y', but even here the 
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terms that yield a non-zero average are easily identified in the lengthy products and 
the remaining terms are promptly discarded. The ha1  result is 

F' = e4[{ 2 K  1 X - [ ias3*1S: l - i~S3,1]  7 sinOdOdcp} 
0 0 2 362 af2 

+L{64[ 4x Jo2K~oKIS3,112sint9d8dcp 1' +172 JoK S:, sin 8 d8 dcp 

lo2' JoK SY1 sin 8 dt9 dcp 1 

The curly brackets in (3.10) enclose groups of similar significance; there are six such 
groups that we denote by the Roman numerals I to VI. Here I contains the terms 
involving the variation of S3,1 on the slow timescale f ,  while the remaining terms 
are due to the resonant interaction. Of these, VI consists of terms that arise out of 
the self interaction of the primary mode while II, 111, IV and v consist of terms from 
the interaction of the primary mode with the bound harmonics of degree 0 ,2 ,4  and 
6, respectively. It is straightforward to determine all the bound harmonics by taking 
variations of P with respect to each one of them to yield 

S2,0 = lllS3,112, S2, = -2S:,1, R2, = -as2 4 3,1, (3.11) 

(3.12) 

'6,O = +?IS,, ,I2, 8 0 , s  = h'%, 1, 2 = -!'%, 1' (3.13) 

Substituting these results back into the Lagrangian the terms 11 to v are evaluabd 
as 

I I + r n + I V + V  = J',oz'~oK ~ ~ 4 ~ s , 1 ~ ~ , i ~ 0 s ~ , 1 ~ ~ 1 ~ 1 7 2 ~ ~ , 1 / 0 s ~ i ~ 2 ~ 2 s ~ , 1 s ~ i ) z s 3 , 1 s ~ , i  

8 4 ,  o = W%, i12, S 4 , 2  = -mS2 36 3,1, '4, B = -Me, 1, 

+ 2095:. 4 2  S3*,21 -YiW3,1s: 114 83.1s: 1 +ws:, 114 q 2 1  

-ys3, 1 ss*, 116 '3.1 ss*, l-Ys:, 110 '711 sine de dyv (3.14) 



Third-order resoname effects of drop oscillations 103 

where the notation I6 indicates that the terms on either side of the bar are coupled only 
through their parts that are spherical harmonics of degree i .  Using the identities (A 5) 
to (A 7)’ the self-interaction terms VI are similarly evaluated to yield 

-7253,1 s:, 114S3 .1  s:, 1-21&, 114 s?l-Ys3,ls: 116 s3,1s3*, 1 

+ Y S ; ,  Ie SS*,al] sin B dB d p  (3.15) 

now expressed exclusively in terms of S3, (and its complex conjugate) the With 
angular integrals are completed by taking 

s3, l(e, q2 52)  = xs3, a(52) G*(e, q)? (3.16) 

where - 3 < a < 3. The quantities { q ( B ,  are defined in Appendix A and constitute 
an orthogonal basis for the expansion of an arbitrary spherical harmonic of degree 
3. Using (A 8) to (A 12), the averaged Lagrangian P becomes 

(3.17) 

where the coefficients appearing above in the interaction term are expressed 
analytically as the sum of products of 3-j symbols (Brink k Satchler 1968). These 
expressions are given in Appendix B. 

Hamilton’s principle is applied to (3.17) and the condition for stationarity with 
respect to a variation in the coefficient is given by 

This expression directly yields the required amplitude equations describing the 
nonlinear interaction in the form 

(3.19) 

where 

By virtue of their definition these coefficients satisfy the symmetry properties 

gA ; a$8 = - (&a)8A (3333) + &(3333) aflA8 ). (3.20) 

gA;aj8= g - A ;  -a-$-8= gA;fla8= g8;a)A, (3.21) 

which are properties useful in the analysis given below. 
A complete analysis of the interaction equations (3.19) is beyond the present scope. 

Here we consider only the simplest case involving those solutions of (3.19) that have 
a constant amplitude and a linearly varying phase. These correspond to finite- 
amplitude time-periodic solutions that have the same form as the small-amplitude 
solutions of the linear theory, except for a nonlinear correction to the frequency that 
is proportional to the square of the amplitude. The interaction equations admit only 
three classes of such solutions; these correspond to (i) the axisymmetric (zonal) 
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harmonic, (ii) an arbitrary linear combination of tesseral harmonics of rank two, and 
(iii) an arbitrary linear combination of sectorial harmonics. These solutions and their 
stability properties are investigated below. This nonlinear theory allows only a subset 
of the class of time-periodic solutions that are admitted by the linear theory. The 
stability analysis will provide a further restriction by delineating those solutions that 
are stable to perturbations and hence likely to be observed experimentally. 

3.1. Axisymmetric oscillations 
In  the case of axisymmetry the interaction equations reduce to a single equation for 
the complex amplitude of the zonal harmonic 

which is solved to yield 
s3, o = b3.01 exp{-iao;oooh, 01~62). 

(3.22) 

(3.23) 

Using the numerical value of the coefficient in the exponent and making the 
appropriate substitutions into (3.16) and (3.6) the full solution is given by 

(3.24) 

The form of (3.24) shows the decrease in the oscillation frequency from the linear 
theory by a value proportional to the square of the amplitude. This is similar to the 
result obtained by Tsamopoulos & Brown (1984), where a value of -4.60918 is 
reported for the proportionality constant compared to the value - 3.955 14 given 
here. The analysis of Tsamopoulos & Brown involves a domain perturbation analysis 
of the potential-flow equations and boundary conditions. The differences between this 
approach and the variational formulation used here frustrate even detailed 
comparisons of intermediate results in order to resolve this discrepancy. The only 
recourse has been to independently recheck the calculations of the present work for 
consistency. However, it is clear the difference between the two reported values is 
not qualitatively significant. The majority of the conclusions regarding the nonlinear 
dynamical behaviour of drops obtained in this work are based on symmetry 
considerations involving the spherical harmonics and hence are not crucially affected 
by the possibility of numerical errors in the evaluation of the coefficients. 

The stability of the finite-amplitude axisymmetric oscillations to perturbations in 
the resonant partners is examined by taking these in the form 

s3(e, q, 6) = 21e3, o1 COS ((1 - 3.955 141 s3, o12) w3 p3(cOs el. 

where the time-periodic factor (which does not affect the stability arguments) is taken 
so that the perturbation equations are non-autonomous. The symmetry properties 
of the coefficients in (3.21) are exploited by summing together pairs of terms 
corresponding to tesseral harmonics of the same rank and the pair of sectorial 
harmonics, to decrease the order of the problem. The linearized perturbation 
equations obtained by this procedure are 
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an ; 00-n 2an ; no0 -a0 ; 000 

n =  1 -9.85067 -9.85067 
n = 2  13.90533 -5.63279 
n = 3 -7.01105 -19.42078 

TABLE 1.  Numerical values of coefficients appearing in equation (3.27) 

This system is easily seen to be equivalent to 

-- ;;; - [%oo-n-(2%; n o o - g o ;  ooo)211~3,014Yn' (3.27) 

The signs of the coefficients in the brackets clearly determine the stability of the 
axisymmetric oscillation to the corresponding perturbations. From the numerical 
values in table 1, we see that disturbances of the tesseral harmonics of rank one are 
neutrally stable, those of the sectorial harmonics are stable while the perturbations 
corresponding to the tesseral harmonics of rank two are unstable. 

This resonant instability of the axisymmetric oscillations to non-axisymmetric 
perturbations with spatial forms having the same degenerate linear frequency 
provides an explanation for the experimental observations of Trinh & Wang (1982) 
that were described in $1. Owing to the presence of a suspending fluid, the exact 
circumstances of their work differs from the theory presented here. Nevertheless, it  
is clear that the same basic internal resonance mechanism plays a role in their 
experimental configuration. Indeed, such instabilities may be expected in any 
nonlinear conservative system executing oscillations about a spherically symmetric 
base state. 

The stability analysis yields the initial shape of the unstable perturbations which 
grow on a timescale that is proportional to the square of the primary oscillation 
amplitude. The ha1  dynamical state of the drop due to this instability is not 
determined by this analysis and requires the study of the full nonlinear set of 
interaction equations. In  real experimental systems the effects of viscosity, however 
slight, also will become important eventually and damp the drop motions. In  the 
experiments of Trinh & Wang (1982) involving maintained oscillations the effect of 
viscosity would be to diffuse the mean angular momentum in the surface motions 
of the growing non-axisymmetric perturbations. This would lead to the non- 
axisymmetric wavelike motions being transformed into an eventual rigid-body 
rotation of the drop, as seen in the experiment. 

3.2. Oscillations of the tesseral harmonics of rank two 
The interaction equations that describe the finite-amplitude solutions expressed in 
terms of the tesseral harmonics of rank two are 

(3 -28 a) 

(3.28 b) 
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83.2 = b 3 , 2 1  exp { -i(g2; ~ 2 2 1 ~ 3 ,  212 + 2g2; 2-2-2b3, -212) 621 ,  (3.29 a) 

83, -3 = 183, -21 exp { - i ( g z ;  22s18s, -zl'+ 2gz; 2-2-zb3,21') 62). (3.29b) 

Substituting (3.29) into (3.16) and (3.6) and using numerical values for the coefficients 
gives for the full solution in the form 

fJ3(0,p, 6) = (&)4[183,21 cos{(l +0.93085~~3,2(2-44.98031~~3,-2~2)w3~-2p) 

  IS^,-^^ cos{(l+0.93085~83,-2~2-4.98031~83,2~2) w36+2p}]~(c0s0).  
(3.30) 

The nature of this solution is made much clearer by going to a frame of reference 
rotating with a constant angular velocity in the azimuthal direction. The phase angle 
q~' in this transformed reference frame is 

p' = p- 1.47779(18,, 212 - Is3, - 2 1 2 )  w3 6. (3.32) 

With this substitution (3.30) becomes 

f J 3 ( 0 ,  p', 6)  = (&df[l%, 21 COS{(l-2.024731%, i- 183, -d2) 6-2p'l 

+183,-21 cos((1 -2.024731~3,-212+Is3,212)w36+2p')1~(cos~), (3.33) 

which is seen to describe a superposition of two azimuthally travelling waves of 
identical form and frequency but with opposite sense. The wave frequency has the 
familiar nonlinear correction terms that are proportional to the mean value of the 
sum of the squares of the amplitudes (or equivalently, to the mean energy). This 
frequency correction is hence non-zero for any non-trivial choice of the initial 
conditions. The angular velocity of the rotating frame of reference is zero when the 
mean values of the squares of the amplitudes of the waves are equal in magnitude. 
This is also equivalent to the condition that the mean angular momentum is zero and 
no travelling waves are possible in this case, so that (3.33) reduces to 

S3(0, p', 6 )  = (&)fls3, cos ((1 -4.04946b3, 2 1 2 )  o3 0 cos 2pP3cos 0) ,  (3.34) 

which is a solution describing a finite amplitude non-axisymmetric standing oscil- 
lation in the inertial reference frame. 

The stability of the solutions (3.30) to perturbations in resonant partners can be 
analysed by taking the disturbances to have the form 

83, o = Yo exp {-i(ig2; 332 -k a2; 2-2-21 (183, 212 -k 183, -21') E z ) ,  (3.35a) 

(3*35b) (83 ,  1 7  83,  3)  = (Yi, Y3) exp {-i(82; ~ 2 2 1 ~ 3 ,  212+2a2; 2--2-21%, -21') 621 ,  

(s3, a3, -3) = ( Y - ~ ,  Y - ~ )  exp { - iM2;  222183, -A2 + 2g2 ;  2-2-2b3, 212)  Eel, (3.354 

where, again, the time-periodic factors appearing above are taken in order to render 
the perturbation equations non-autonomous. 

A suitable parameter for describing the stability results is the quantity a, defined 
as 

(3.36) 
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This quantity has the physical interpretation of being the ratio of the square of the 
mean angular momentum to the square of the mean energy in the primary oscillation 
(suitably normalized to lie between 0 and 1). There is a unique correspondence 
between the values of a and all possible solutions of the form (3.30). 

The perturbation equation for the zonal harmonic is decoupled from the others and 
is given by 

- dY0 
d52 

1- = 2ao; -2201~3, -21 Is3,2lYo*+ [ ( ~ B o ;  022-!$2; 2 2 2 + 9 2 ;  2-2-2)(183, -2I2+Is3, 2 l2 ) }Y0*  

(3.37) 

Substituting the numerical values for the coefficients and differentiating gives 

-- d2yo - 193.3446(1s3, 212 + Is3, -212)2{ 1 - 1 .OOOO7a} yo, (3.38) 

from which i t  is easily seen that all solutions of the form (3.30) with a < 0.999929 
are unstable to perturbations in the zonal harmonic. 

d5; 

The equations for the remaining perturbation quantities are 

i* = {(2g1; 1 2 2 - 9 2 ;  2 2 2 ~ s 3 ,  *212+ (2gl; 1 - 2 - 2 - 2 9 2 ;  2-2-2)1s3, r 2 1 2 } y * 1  
d 5 2  

+ 2gi; -22- ib3,  -21 I%, 21!41+ 2gi; 2-3-2b3, -21 I%, 2 1 Y r 3 + g i ;  2231%. *212!&33 

(3.39 a)  

+2W3;-2a-sls3, -21 b s , ~ I Y $ s + ~ g 3 ;  2-I-2h, -21 I%,sIYri+Wi; 223b3, *212?-.41- 

(3.39b) 

The eigenvalues for this set must be obtained from an 8 x 8  determinant. This 
calculation was carried out numerically and the results show that solutions of (3.30) 
with a 2 0.79 are unstable to these perturbations. 

3.3. Oecillations of the sectorial harmonics 
The ha1  case studied in this section involves the finite amplitude oscillations of the 
sectorial harmonics. The interaction equations in this case specialize to 

p 3 . 3  - g 3; 3 3 ~ 1 ~ 3 ,  ~ 1 ~ 8 3 ,  S +  g3; 3 - 3 - 3 h ,  -31 2 %, 3, (3.40 a)  
d52 

(3.40b) i d s 3 ,  -3 = 
g3; 33&3, -312%, - ~ + ~ ~ 3 ;  3 - ~ - 3 1 ~ 3 ,  31as3, -39 

d52 

for which the solutions are given by 

s3,3 = b3,31 exP{-i(g3; 333183, 3 1 2 + 2 a 3 ;  3-3-3183, -31') 521, 

83,-3 = I%,-aI exp{-i(g3;3331s3,-312+2g3; 3-3-3b3,312)62). 

(3.41a) 

(3.41 b )  
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As in the previous case the solution is most conveniently represented in a frame of 
reference rotating with a constant angular velocity in the azimuthal direction for 
which the phase angle is given by 

q’ = v- 1.19424(183, 312- 183, -312) W3 E,  (3.42) 

and in this frame of reference the solution is given by 

&(e,rp’,‘,) = (ih)![-b3,31 COS{(l -5.04099183,312+ls3,312)035-~’> 

+IS,, -31 cos{(i -5.040991s3,3(2+ I S ~ , - ~ ~ ~ ) ~ ~ E + ~ } I ~ ( C O S ~ ) .  (3.43) 

A special case is the solution with zero mean angular momentum. This corresponds 
to a standing finite-amplitude oscillation in the inertial reference frame and is given 

S3(0, rp’, 5) =’ (&$Is3, 31 sin {( 1 - 10.081 9819,. 312) o3 Q sin3p ~ ( C O S  0). (3.44) 

The stability of the solutions (3.42) is analysed by taking perturbations of the form 

by 

83, f l  = Y * l  ~ ~ P ~ - ~ ~ ~ ~ 3 , 3 3 3 + ~ 3 : 3 - 3 - 3 ~ ~ l ~ 3 , 3 1 2 + l ~ 3 , - 3 1 2 ~ 5 2 ~ ,  (3.45) [8::1 ly:l 
to obtain a non-autonomous set of linearized perturbation equations where the 
disturbances corresponding to the zonal harmonic and to the tesseral harmonics of 
various rank all decouple. A similar definition to that in the previous section is 
adopted for the parameter a, 

(3.46) 

Again, there is a unique correspondence between the values of a and all possible 
solutions of the form (3.43). The details of the stability analysis are very similar to 
that carried out in ss3.1 and 3.2. The results are that the perturbations corresponding 
to the zonal harmonic and the tesseral harmonics of rank one are stable and those 
corresponding to the tesseral harmonics of rank two are unstable for all applicable 
values of a. 

4. Internal resonance of the n = 2 and n = 4 normal modes 
The relation (1.3) between the linear frequencies of the n = 2 and n = 4 normal 

modes will lead to these modes being resonantly coupled through the third-order 
terms in the nonlinearity. The analysis of this resonance is carried out using the same 
procedure developed in the previous section for the analysis of the n, = 3 linear normal 
mode with the only complications arising in this case from the more involved algebra. 
Thus, the corrections to the drop shape and velocity potential are taken here in the 
form 

.f’(e,p> 6)  = s 2 ( e , ~ , 6 ) + 8 4 ( e , p ,  5 ) + E [ S ( ) ( 5 ) + S 6 ( e , ~ ,  5 ) + s 8 ( e , ~ ? 5 ) 1 + 0 ( E 2 ) ,  (4*1a) 

#‘(% 8, p, 5) = ?J2R,(0, p, E )  + 34R4(@, w, E )  + “[T6R,(8, p, 5) + r8R,(0, p, 511 + W2),  
(4.1 b) 

where {ti!,, R,} are time-dependent surface harmonics of degree n. The form of the 
O(B) terms in (4.1) is again anticipated in a successive-approximation procedure and 



Third-order resonance effects of drop oscillations 109 

the solution to the velocity potential is consistent with the bounded solution of 
Laplace's equation. Substituting these expansions into the Lagrarigian in (2.4) yields 

Y f  = e2[1', Jo aR (zs:-$S,+R~+9S:-9-S4+2R: aR4 
211 X 

86 

aR aR4 
a6 a6 

+ e3 [ Jo2" joK { -3S2 +S,I3 -2 2 (S,  + S,), - 3- (8, + S,)' +$Ri S, 

+ R, R4( 185, + 1 IS,) + R:(yS, + 13S4) sin 6 d8 d p  > I  
+ e4 [ (4rrSo + 5,"' JoX (Si + S:) sin 8 d8 dp p i  - 47rSt I 

aR aR +so &" Jon { - 2s: - 2s: - 4 a S, - 6 AS4 + 5Ri + 18R: 
36 a6 

aR 
a6 

aR + JozK JoK { 205; -2 S, + 3R; - 45, S, + 2s: + 4 2 S, + 6 

aR 
a6 

- (85, S, + 45,) >+ (26R, S, + 52R, S, + 45R, S,) Re} sin 6 d8 dp 

aR 
a6 

aR 
+ Jo2K 

{ 355; -$+ 4R; - S, - 5S:>+ 68R4 S, R,} sin 8d8 dp, 

+ 

4R;+D(R,, R 2 ) - 6 3 S ,  32R:+2D(R4, R 4 ) - 1 5 3 S 4  
36 a6 

+ (24R, R, + 3D(R,, R4) - 2 3 S, S: sin 8 d8 d p  . 
86 ) I  1 (4.2) 

As in the previous section, similar sets of terms have been grouped together in (4.2) 
to aid interpretation and to simplify the further analysis. The results of the linear 
theory are obtained from the O(e2) terms while the higher-order terms give the 
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required nonlinear corrections. Taking variations with respect to p i  and So, these 
variables can then be eliminated from the Lagrangian using the resulting identities. 

Since the primary oscillations have frequencies of w2 and w4 = 3w2, the bound 
harmonics generated by the second-order correction terms have the frequencies 0, 
2w2, 40, and he so that they may be taken in the form 

S2 = S2,1([2) eiWaf+Sz*,l([a) e-iozE+sF,, 

R2 = -$02 s2, 1([2) eiW*E++iw2 S:, 1([2) e-'Ogf+eG2, 

(4.3a) 

(4.3b) 

(4.3c) 

(4 .34 

S4 = S4,3(E2) eio4E+Sz,3([2) e-iw4f+sF 49 

R4 = -iio4 S4, 3 ( [ 2 )  eiW4E+iiw4 Sz, 3([2) e-'"4E+eG4, 

S, = F,; R, = G,; S, = 4 ;  R, = G,, (4.3e) 
where F, and G, are given by 

F, = Sn,o+Sn,2  e2ioaE+S:,2 e-2iotE+S n ,  4 & t E  

+S$,, e-4imtf+Sn,, eeiozE+S;,, e-eiwaE, (4.3f 1 
G, = -2i0, Rn, e2iwaE+ 2iw2 R;, e-2iwtE-4iw2 R,, e4%E 

+4iw2 R:, e-4i02E- 6iw2 Rn, , eaioaf,+6i02 R* n, 6 e-eiwsE. (4.3g) 
The leading-order terms in ( 4 . 3 4  are chosen to be consistent with the linear 
theory except for the dependence on the slow timescale. It is convenient in this section 
to define this slow timescale 5, with a slightly different normalization than the one 
used in (3.8) as 

(4.4) 
The expansions ( 4 . 3 ~ )  are substituted into (4.2) and the mean Lagrangian 

is evaluated by averaging over the primary oscillation time period 2x/w2.  Then 
is written in terms of the fundamental variables S2,1 and S4,.) by determining the 
remaining quantities in (4.3g) and (4.3f) using the variational procedure. The 
calculations involved in these two steps are straightforward albeit tedious and we 
have not ventured to present either the lengthy form of the averaged Lagrangian or 
the expressions for the several intermediate coefficients. The angular integrals in the 
averaged Lagrangian are evaluated explicitly by taking expansions for S2, and S4, 
in terms of their corresponding basis functions as 

#a, l(0, ~9 5 2 )  = x 9 2 ,  a&) G'(e, q), 

s4, 3(O, q, 52)  = x s4, a ( t 2 )  c*(e, q)' 

(4.5a) 

(4.5b) 

expressed solely in terms of the The final result of these manipulations is 
complex-valued amplitude functions s2, a and s4, a as 
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where the coefficients appearing in the interaction terms above are again given by 
sums of products of 3-j symbols and whose analytical expressions can be found in 
Appendix B. The application of Hamilton’s principle gives the condition for 
stationarity with respect to variations in sa, , and s4, , as 

(4.11) 

The form of the interaction equations (4.8) and (4.9) allows some general conclus- 
ions to be drawn regarding the effect of the mode coupling caused by resonance on 
the long-term dynamics of the two linear normal modes in question. First it is clear 
that the interaction equations do not admit a constant solution (corresponding to 
a time-periodic oscillation) that is comprised purely of the components of n = 2 
normal mode. Thus any initial condition involving only this mode will spontaneously 
degenerate while exciting the components of the n = 4 normal mode. This takes place 
through the terms involving the interaction coefficients In  contrast, the 
interaction equations permit constant solutions that have only the components of 
the n = 4  normal mode. However, the question of the stability and thus the 
experimental realizability of these solutions requires a more detailed analysis of the 
interaction equations. 

In  the following subsections, we have restricted our study to the form and stability 
of the purely axisymmetric motions. First, we examine the stability of the finite 
amplitude axisymmetric oscillations of the n = 4 normal mode. Secondly, we analyse 
the periodic and quasi-periodic motions that can result due to the combination of 
the axisymmetric components of the n = 2 and n = 4 normal modes. 
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4.1. Axisymmetric oscillations of the n = 4 normal mode 
The interaction equations for the finite amplitude axisymmetric oscillations of the 
n = 4 normal mode reduce to 

(4.12) 

which is integrated to give 

s4,o = b4,01 exp { -igo; 0001~4, 012!&>- (4.13) 

Using the numerical value of the coefficient So; ooo and substituting into ( 4 . 5 ~ )  and 
( 4 . 3 ~ )  yields for the full solution in the form 

s4(e, y, 5) = 219,. o1 cos ((1 - 5.594061s4, 012) w4 f;> P,(COS el. (4.14) 

As in the case of the axisymmetric oscillations of the n = 3 linear normal mode studied 
in the previous section the analysis here predicts a decrease in the frequency of the 
oscillation proportional to the square of the amplitude. The proportionality constant 
in this decrement which is -5.59406 above compares with the value of -5.9818 that 
is reported in Tsamopoulos & Brown (1984). 

The stability of the solution in (4.14) to perturbations in the resonant partners may 
be analysed as follows. The perturbations 82, A of the components of the n = 2 mode 
satisfy the linearized equations 

(4.15) 

This is easily seen to have only bounded solutions so that the primary oscillations 
are stable to these perturbations. Reminiscent of the result (3.25) we take the 
perturbations in the non-axisymmetric components of the n = 4 mode to have the 
form 

8 4 . 1  +s4, -1 

(4.16) 

s4,4  +s4, -4 Y4 

after exploiting the symmetries of the coefficients SA aga (which are identical to those 
of in (3.21)) to sum together the perturbation equations corresponding to the 
tessera B harmonics of the same rank as well as to the sectorial harmonics. The 
linearized perturbation equations that result are 

a 

The signs of the quantities in the brackets determines the stability of the corre- 
sponding perturbations. From the numerical values listed in table 2 we see that the 
disturbances of the tesseral harmonics of rank one are neutrally stable, of the tesseral 
harmonics of rank three and the sectorial harmonics are stable while the disturbances 
of the tesseral harmonics of rank two are unstable. 



Third-order resonance effects of drop oscillations 113 

g n  ; 00-n 2Fn ; no0 - 9 0  ; 000 

n = 1 -24.24774 -24.24774 
n = 2 31.72597 -6.07580 
n = 3 - 15.64602 -32.135541 
n = 4 14.92950 -44.24937 

TABLE 2. Numerical value of the coefficients appearing in equation (4.17) 

4.2. General axisymmetric solutions 

The study of the resonant interaction equations under the restriction to axisymmetric 
motions can be carried out completely, for it can be shown that in this case (4.13) 
and (4.14) possess first integrals that reduce the problem to a quadrature (Nayfeh 
& Mook 1979). It is then possible to examine the nature of the resulting solutions 
graphically as shown below. 

Setting the non-axisymmetric terms in (4.13) and (4.14) to zero, the interaction 
equations reduce to 

1 * !!% = vo; oools2, 012s2, 0 + 9 0 ;  ooo l~4 ,  ol2g2, 0 + do; 000 syo 84,0,  ( 4 . 1 8 ~ )  
dE2 

(4.18b) 

where the numerical values of the coefficients are given by (henceforth omitting 
subscripts) 

* ds4, 0 - 90; ooob4, olz%, O + ~ O ;  0001~2, olBS4, O + ~ O ;  ooo si, 0 3  

G 2  

% = 3.745197, 9 = 8.883809, d = -0.233766, 

9 = 26.85150, Y = 10.660569, 3? = -0.0935063. 

The energy integral is obtained easily from (4.18) as 

X b 2 ,  oI2 4- 8184, oI2 = r, (4.19) 

where r is a constant. The interaction equations are now rewritten in terms of polar 
variables by defining 

s ~ , ~  = ( 2 ? x 2  ei%; s ~ , ~  = (:?x4 e i 8 d ;  E2 = (7) i& r ;  y = 302-e4, (4.20) 

so that (4.18) is now equivalent to the set 

(4.21) 

- x  -= dY a l x ; x 4 + a 2 ~ + ( 3 x 2 x ~ - ~ ; )  cosy, (4.22) 
dq2 

where 
a1 = ( 3 X - Y ) ( H 8 ) 4  = 3.889317; a, = (39-9)~8' -~(3?8) i  = -0.541298. 

Using the energy integral (4.19) we can rewrite (4.22) in the form 

(4.23) 

(4.24) 
d - (xi  x4 COB y )  = +a1 xi  ++(a2 - al) 4, 

d x 4  
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0.5 1 .o 
x: 

FIQURE 1. The functions F,(solid line) and G (dotted lines) as defined in (4.29). The different curves 
for G correspond to values of C given by (a) 0.112, (a) 0, (c) -0.2, ( d )  -0.4, (e) -0.6, (f) -0.832, 
(8) -0.9644. 

which is integrated to give 
xi x4 cos y = +a1 x; ++(a, - al) x: + c, 

where C is a constant of integration. Substituting for siny in (4.21) gives 

(4.25) 

(4.26) 

A special class of interesting solutions of (4.26) are those for which there are no 
amplitude modulations. These solutions are characterized by the fact that there is 
no energy transfer between the two modes due to the interaction. From (4.21) we 
see that the necessary condition for this is that the phase of the two oscillating modes 
must be such that siny = 0. The amplitudes are not determined by this condition 
but for consistency must be chosen such that right-hand side of (4.22) is zero. This 
yields a cubic for the ratio (x4/x2) of the form 

(4.27) 

and using the numerical values of a1 and a, the three roots of this cubic are obtained 
as eY = 1.60967, 43.4281, 0.048822. (4.28) 

The use of the energy integral (i.e. x i + x ;  = 1) then yields the amplitudes of the 
individual modes. The physical interpretation of this result is clear if we consider an 
initial condition involving the axisymmetric components of both the n = 2 and n = 4 
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-4 
FIQURE 2. The functions F (solid line) and Q (dotted line) defined in (4.29). The curve for Q 
corresponds to a value of C = -0.839 197 and the tangency of the two curves is for the fixed point 
with xi = 0.9775. 

modes with the ratios of their amplitudes being one of the three values in (4.28) and 
with the individual phase angles being such that y = 38,-8, = 0 or R. In  this case 
the resonant interaction will occur without any energy exchange between the two 
modes. However, the individual modes undergo frequency modulations which are 
constrained by the requirement that the total phase angle variable y is invariant. 

All other possible initial conditions lead to periodic amplitude modulations. To 
analyse this general case, we define 

(4.29) 

In order that the radical in (4.26) be positive, we require F 2 B, so that the values 
of C are constrained to lie in the interval -0.9644 < C < 0.1127. The functions F(z:) 
and are plotted for different values of C in figure 1. The intersectiop points in 
the curves of these two functions determine the extremal values of the amplitudes 
during the modulations. For example, we consider the case in which all the initial 
energy is in the n = 2 normal mode. Then C = 0 and from figure 1 the extremal values 
attained by xi are seen to be 0 and 0.18 (approx.). Thus the initial conditions, which 
determine the values of the integration constant C and hence the location of the 
intersection points in figure 1, are seen to play a crucial role in determining the nature 
of the oscillation. The fixed-point solutions of the interaction equations obtained 
earlier in (4.28) are obtained at  the points where the curves of I' and B are tangential 
to each other for clearly no amplitude modulations are then possible. We can locate 
the first two fixed-point solutions of (4.28) as lying on the curves labelled a and g 
in figure 1. The curves corresponding to the third fixed point are tangential at a value 
of z: k: 0.97749 and this is shown with better resolution in figure 2. 

Phase plane diagrams of (4.26) are also shown in figures 3 and 4 for different values 
of the integration constant C. These figures provide an indication of the dynamical 
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0 0.5 

x: 

1 .o 

RQURE 3. A phase plane plot of (4.26) for different values of C corresponding to (a) 0.08, (a) 0.05, 
(c)O, (d) -0.05, (e) -0.1, (f) -0.2, (8)  -0.3, (h)  -0.5, (i) -0.7, (j) -0.84, (k) -0.88and(Z) -0.91. 

dx' 1 2  
dllr 

x: 

FIGURE 4. Phaae plane plot of (4.26) as in figure 3 but with better detail near the fixed point 
corresponding to x i  = 0.9775. The curves correspond to different values of C given by (a) -0.838, 
(a) -0.8385, (c) -0.8395, (d) -0.8398 and (e) -0.840. 
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behaviour that would be expected if the initial conditions were slightly perturbed 
from the values corresponding to the fixed-point solutions. The two fixed points with 
the lower values of ~ 4 "  are stable in the sense that a small change in the value of C 
results in motions in a small, bounded neighbourhood of the fixed point. This is not 
true for the remaining fixed-point solution since, as is evident from figure 4, a small 
change in the value of C leads to considerable amplitude modulations. 

The further examination of the stability of these axisymmetric motions to 
non-axisymmetric perturbations has not been pursued here. 

5. Concluding remarks 
The amplitude equations that have been derived here for the third-order resonant 

interactions of the n = 3 mode and for the combined interaction of the n = 2 and 
n = 4 modes of drop oscillation lead to  some interesting properties. In the former caae, 
analysis of the interaction equations shows that simply-periodic hite-amplitude 
equations are possible that have the usual amplitude-dependent nonlinear frequen- 
cies. The spatial forms of these solutions are either axisymmetric, or a superposition 
of tesseral harmonics of rank two, or a superposition of the sectorial harmonics. In  
the latter two cases the solutions take the form of rotating waves that are simply 
periodic only in an appropriate reference frame rotating with a constant angular 
velocity in the azimuthal direction. However, when the mean angular momentum 
is zero no rotating waves are possible and these solutions reduce to standing-drop 
oscillations. The stability analysis showed that none of these solutions were stable. 

The absence of stable, simply-periodic finite-amplitude solutions raises the possi- 
bility that the eventual long-term drop dynamics will display a three-dimensional, 
quasi-periodic behaviour with simultaneous amplitude and phase modulation in- 
volving several interacting components. To uncover these solutions it is necessary to 
go beyond the linear-stability calculations to the analysis of the full set of nonlinear 
amplitude equations. However, in view of the large dimensionality of the resonant 
interaction set, the prospect of a stochastic long-term behaviour is more likely 
(Lichtenberg 6 Lieberman 1983). The main characteristics of this dynamical 
behaviour would be a sensitive dependence of the solutions on the initial conditions 
and a uniform Fourier spectrum at low frequencies indicating the absence of any 
dominant secondary frequencies. The spatial form of the drop associated with this 
stochastic behaviour would be relatively simple as it would be composed primarily 
of the components of the n = 3 mode along with some negligibly small contributions 
from the bound harmonics. This stochasticity is even more likely to be exhibited by 
the amplitude equations describing the combined dynamics of the n = 2 and n = 4 
modes in view of their larger dimensionality. 

In  the analysis presented here we have assumed an isolated drop and hence take 
the dynamical effects of the suspending medium to be negligible. Experiments carried 
out by levitating a drop in the microgravity environment aboard the Space Shuttle 
make it possible for the requirements of the theory to be closely matched and yet 
permit the acquisition of data over a sufficient period of time to  test our conjectures 
on the long-term dynamics. 

Finally, we remark on the role of viscosity in modifying the effects that have been 
described in this paper. The inviscid analysis leads to a discontinuity in the tangential 
velocity at the interface between the drop and the suspending fluid which in real fluids 
is smoothed out by viscous boundary layers. Lamb (1932) argues that for oscillatory 



118 R. Natarajan and R. A. Brown 

flows the vorticity that is generated at  the interface of the drop diffuses inwards but 
since the flow is periodic it constantly reverses its sign. This constrains the viscous 
effects to be important only in a thin Stokes boundary layer of thickness (v /w)i ,  where 
v and w are the kinematic viscosity and oscillation frequency, respectively. Since this 
boundary-layer thickness is small compared to the radius in centimetre-sized water 
drops, the role of viscosity is confined to damping the free oscillations over a long 
timescale compared to the oscillation period of the low-order modes. Tsamopoulos 
& Brown (1984) present a scaling analysis indicating that inviscid resonant effects 
should be observable above the damping effects of viscosity for the oscillation modes 
up to n = 8. 

For liquid drops of greater viscosity the coupling between nonlinearity and viscous 
effects is a problem that has not been explored. Some fascinating flow-visualization 
experiments that bear on this problem were conducted by Trinh & Wang (1982) and 
show a transformation in the flow fieid from a periodic, nearly potential flow at small 
oscillation amplitudes, to the appearance at large amplitude of time-dependent eddies 
that have the spatial symmetry of the primary oscillation. This change in the nature 
of the flow cannot be explained on the basis of either a linear viscous theory or a 
nonlinear inviscid theory. The eddies are likely to be due to the generation of a 
secondary mean flow in the viscous boundary layer. Since the flow is then no longer 
simply periodic, Lamb's arguments given earlier require modification and the 
boundary layer can grow. The viscous effects will then manifest throughout the drop 
leading to the weak secondary recirculating flows. 

This research was supported by the Microgravity Sciences and Applications 
Program of the National Aeronautics and Space Administration. 

Appendix A 
This appendix contains some identities involving integrals of products of spherical 

harmonics. In the following we let S,, S,, S, and 8, denote spherical harmonics of 
degree n, m, k and Z respectively. Then 

Jo2' J'S, sinededq = 0 for n =+ 0, 

( 0  i f n + m ,  

+--csc2e S, sinBd8dq=#n(n+l) 1 21 = as,as, as,as, I, Jo [-- ae ae ap % 
P2ll  P I  

+m(m+ 1)-Z(Z+ l)] S,S,S, sin8dedp (A 4) Jo- Jo 
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The following identities follow directly from (A 1) to (A 4) and are useful in deriving 
(3.2) and (4.2): 

min(n+m,Z+k) 2% II 6% Jon 8,8, 8, 8, sin 8 d6 dp = E Jo Jo 8, 8,lc 8 , s k  sin 6 do dq, (A 5 )  
c-0 

min(n+m, Z+k) 

Joxj0D(8,,8,)8l8k sinededg,= c-0 i[n(n+1) 

211 x 
+m(m+l)-c(c+l)]J 0 0  1 S,S,Ic8,8ksint9dedq, (A6) 

mln(n+m, Z+k) 

c-0 
Jo2' loK D(8,, 8,) D@,, 8,) sin 0 dt9 dq = E +[n(n + 1) + m)m + 1) - c(c + 1 )] 

zr x 
x[Z(Z+l)+k(k+l)-c(c+l)] 8n8,1,8,8ksint9dt9dq. ( A 7 )  

0 0  

The differential operator D appearing in these identities is defined in (3.3) and as 
defined in the text preceding (3.15) the lc  notation indicates that the terms on either 
side of the bar are coupled only through their components corresponding to  the 
spherical harmonics of degree c. 

cp) are the basis functions for the spherical harmonics that are 
defined in Appendix IV of Brink & Satchler (1968) as 

The quantities 

(za(6,  q) = ( - ~)"c",(6, Q ) ) * 9  (A 9) 
where p"(8) are the associated Legendre polynomials. The %(@,#) satisfy the 
orthogonality conditions 

where 8 denotes the Kronecker delta. The product of three basis functions is given 
in terms of the 3-j symbols by Brink & Satchler as 

The integral of the product of four spherical harmonic basis functions that is used 

I. lo % C ( C $ c  sin8dOdq= E I. jo E$Ic@q sinOdt9dq 

in deriving (3.7) and (4.6) (see Appendix B) then follows from (A 5 )  as 

Z K K  min(a+b,c+d) m x 

c-0 I 

(abde) = E $c;a/ae* (A 12) 
c-0 

The integrals Jgts can be evaluated in terms of the 3-j symbols as 



120 R. Natarajan and R.  A .  Brown 

Appendix B 

interaction terms of the averaged Lagrangian in (3.7) and (4.6) 
This section contains the analytical expressions for the coefficients appearing in 

16033 3333) + - 19093 gc3333, 1109 
81 S h ; a - 8 p - ~  10 108 4 :  ap-8--~-- 

1 3817 4444) 37069 55217 $4444) 9112 9 ( 4 4 4 4 )  
- - 64 g ( 4 4 4 4 )  B ; a - d p - . z + m  a,4-8-~ 7 8 ; a - 8 p - ~ - 7 ~ ! t ; a p - d - - ~  
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